pyxs Documentation
Release 0.1

Sergei Lebedev, Fedor Gogolev

January 12, 2016

Contents

1 pyxs 1
2 API reference 3
2.1 pyxs.client ... e 3
2.2 pyxs.helpers ..o e 6
2.3 PYXS.EXCEPLIONS ¢ & v v v v v e 7
2.4 pyxs._nternal ... oL e e e e e e e e e 8
3 Indices and tables 9
Python Module Index 11

CHAPTER 1

pyxs

Pure Python bindings for communicating with XenStore. Currently two backend options are available:
e over a Unix socket with UnixSocketConnection,;
* over XenBus with XenBusConnection.

Which backend is used is determined by the arguments used for C1ient initialization, for example the following
code creates a C1ient instance, working over a Unix socket:

>>> Client (unix_socket_path="/var/run/xenstored/socket™)
<pyxs.client.Client object at 0xb74103cc>

>>> Client ()

<pyxs.client.Client object at Oxb74109cc>

Use xen_bus_path, if initialize a C1ient over XenBus:

>>> Client (xen_bus_path="/proc/xen/xenbus")
<pyxs.client.Client object at 0xb7410d2c>

copyright
3. 2011 by Selectel, see AUTHORS for more details.

Contents:

http://wiki.xensource.com/xenwiki/XenBus
http://wiki.xensource.com/xenwiki/XenBus

pyxs Documentation, Release 0.1

2 Chapter 1. pyxs

CHAPTER 2

API reference

2.1 pyxs.client

This module implements XenStore client, which uses multiple connection options for communication:
UnixSocketConnection and XenBusConnection. Note however, that the latter one can be a bit buggy,
when dealing with WATCH_EVENT packets, so using UnixSocketConnection is preferable.

copyright
3. 2011 by Selectel, see AUTHORS for more details.

class pyxs.client .UnixSocketConnection (path=None, socket_timeout=None)
XenStore connection through Unix domain socket.

Parameters

* path (s7r) — path to XenStore unix domain socket, if not provided explicitly is restored
from process environment — similar to what 1 ibxs does.

* socket_timeout (float) — see socket.settimeout () for details.

class pyxs.client .XenBusConnection (path=None)
XenStore connection through XenBus.

Parameters path (str) — path to XenBus block device; a predefined OS-specific constant is used,
if a value isn’t provided explicitly.

class pyxs.client.Client (unix_socket_path=None, socket_timeout=None, xen_bus_path=None, con-

nection=None, transaction=None)
XenStore client — <useful comment>.

Parameters

* xen_bus_path (str) — path to XenBus device, implies that XenBusConnection is
used as a backend.

* unix_socket_path (str) — path to XenStore Unix domain socket, usually something
like /var/run/xenstored/socket — implies that UnixSocketConnection is
used as a backend.

* socket_timeout (float) — see socket.settimeout () for details.

* transaction (bool) — if True transaction_ start () will be issued right after
connection is established.

Note: UnixSocketConnection is used as a fallback value, if backend cannot be determined from argu-
ments given.

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#bool

pyxs Documentation, Release 0.1

Here’s a quick example:

>>> with Client () as c:
c.write("/foo/bar", "baz")
c.read("/foo/bar")

oK
'baz'

read (*args)
Reads data from a given path.

Parameters path (s7r) — a path to read from.

write (*args)
Writes data to a given path.

Parameters
* value — data to write (can be of any type, but will be coerced to bytes () eventually).
* path (str) — a path to write to.

mkdir (*args)
Ensures that a given path exists, by creating it and any missing parents with empty values. If path or any
parent already exist, its value is left unchanged.

Parameters path (s7r) — path to directory to create.

rm (*args)
Ensures that a given does not exist, by deleting it and all of its children. It is not an error if path doesn’t
exist, but it is an error if path‘s immediate parent does not exist either.

Parameters path (str) — path to directory to remove.

directory (*args)
Returns a list of names of the immediate children of path. The resulting children are each named as
<path>/<child-leaf-name>.

Parameters path (sir) — path to list.

get_perms (*args)
Returns a list of permissions for a given path, see TnvalidPermission for details on permission
format.

Parameters path (s7r) — path to get permissions for.

set_perms (*args)
Sets a access permissions for a given path, see TnvalidPermission for details on permission format.

Parameters
e path (str) — path to set permissions for.
» perms (/ist) — a list of permissions to set.

watch (*args)
Adds a watch.

When a path is modified (including path creation, removal, contents change or permissions change) this
generates an event on the changed path. Changes made in transactions cause an event only if and when
committed.

Parameters

4 Chapter 2. API reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list

pyxs Documentation, Release 0.1

* wpath (str) — path to watch.
¢ token (str) — watch token, returned in watch notification.

unwatch (*args)
Removes a previously added watch.

Parameters
* wpath (s7r) — path to unwatch.
* token (s7r) — watch token, passed to watch ().

wait ()
Waits for any of the watched paths to generate an event, whichis a (path, token) pair, where the first
element is event path, i.e. the actual path that was modified and second element is a token, passed to the
watch ().

get_domain_path (*args)
Returns the domain’s base path, as is used for relative transactions: ex: "/local/domain/<domid>".
If a given domid doesn’t exists the answer is undefined.

Parameters domid (inf) — domain to get base path for.

is_domain_introduced (*args)
Returns True' if ‘xenstored is in communication with the domain; that is when INTRODUCE
for the domain has not yet been followed by domain destruction or explicit RELEASE; and False other-
wise.

Parameters domid (inf) — domain to check status for.

introduce (*args)
Tells xenstored to communicate with this domain.

Parameters
¢ domid (int) — a real domain id, (0 is forbidden).
* mfn (long) — address of xenstore page in domid.
¢ eventch (inf) — an unbound event chanel in domid.

release (*args)
Manually requests xenstored to disconnect from the domain.

Parameters domid (inf) — domain to disconnect.

Note: xenstored will in any case detect domain destruction and disconnect by itself.

resume (*args)
Tells xenstored to clear its shutdown flag for a domain. This ensures that a subsequent shutdown will
fire the appropriate watches.

Parameters domid (inf) — domain to resume.

set_target (*args)
Tells xenstored that a domain is targetting another one, so it should let it tinker with it. This grants
domain domid full access to paths owned by farget. Domain domid also inherits all permissions granted
to target on all other paths.

Parameters
* domid (inf) — domain to set target for.

* target (inr) — target domain (yours truly, Captain).

2.1.

pyxs.client 5

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#long
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

pyxs Documentation, Release 0.1

transaction_start ()
Starts a new transaction and returns transaction handle, which is simply an int.

Warning: Currently xenstored has a bug that after 2732 transactions it will allocate id O for an
actual transaction.

transaction_end (commit=True)
End a transaction currently in progress; if no transaction is running no command is sent to XenStore.

transaction ()
Returns a new Client instance, operating within a new transaction; can only be used only when no
transaction is running. Here’s an example:

>>> with Client () .transaction() as t:
t.do_something ()
t.transaction_end (commit=True)

However, the last line is completely optional, since the default behaviour is to commit everything on
context manager exit.

Raises pyxs.exceptions.PyXSError if this client is linked to and active transaction.

2.2 pyxs.helpers

Implements various helpers.
copyright
3. 2011 by Selectel, see AUTHORS for more details.

pyxs.helpers.compile (term)
Compiles a given term to a name-validator pair, where validator is a function of a single argument, capable of
validating values for name.

Note: reserved values aren’t compiled, since there aren’t used anywhere but in the DEBUG operation, which
is not a priority.

pyxs.helpers.spec (*terms)
Decorator, which links a given spec to the wrapped function, by updating its ___spec___ attribute with a list of
validators for each spec term. The following symbols can be used in term definitions:

Symbol | Description

| A NULL (zero) byte.

<foo> A string guaranteed not to contain any NULL bytes.

<fool> Binary data (which may contain zero or more NULL bytes).
<foo>I* | Zero or more strings each followed by a trailing NULL.
<foo>l+ | One or more strings each followed by a trailing NULL.

? Reserved value (may not contain NULL bytes).

7 Reserved value (may contain NULL bytes).

Note: According to docs/misc/xenstore.txt in the current implementation reserved values are just
empty strings. So for example "\x00\x00\x00" is a valid ?? symbol.

pyxs.helpers.compose (*fs)
Compose any number of one-argument functions into a single one.

6 Chapter 2. API reference

pyxs Documentation, Release 0.1

>>> f = compose (sum, lambda x: x + 10)
>>> f£([1, 2, 3])
16

pyxs.helpers.many (f)
Convert a one-argument predicate function to a function, which takes a various number of arguments and return
True only when predicate is truthy for each of them; otherwise False is returned.

>>> f = many(lambda x: x > 5)
>>> f£([1, 5, 9])

False

>>> f£([11, 15, 191])

True

pyxs.helpers.many_or_none (f)
Convert a one-argument predicate function to a gunction, which takes a various number of arguments and returns
True when predicate is truty for each of them or no arguments were provided; otherwise False is returned.

>>> f = many_or_none (lambda x: x > 5)
>>> f£([])

True

>>> f£([11, 15, 19])

True

2.3 pyxs.exceptions

This module implements a number of Python exceptions used by pyxs classes.
copyright
3. 2011 by Selectel, see AUTHORS for more details.

exception pyxs.exceptions.InvalidOperation
Exception raised when Packet is passed an operation, which isn’t listed in Op.

Parameters operation (int) — invalid operation value.

exception pyxs.exceptions.InvalidPayload
Exception raised when Packet is initialized with payload, which exceeds 4096 bytes restriction or contains a
trailing NULL.

Parameters operation (bytes) —invalid payload value.

exception pyxs.exceptions.InvalidPath
Exception raised when a path proccessed by a comand doesn’t match the following constraints:

«its length should not exceed 3072 or 2048 for absolute and relative path respectively.

*it should only consist of ASCII alphanumerics and the four punctuation characters —/_@ — hyphen, slash,
underscore and atsign.

«it shouldn’t have a trailing /, except for the root path.
Parameters path (byfes) — invalid path value.

exception pyxs.exceptions.InvalidTerm
Exception raised by compile () when a given term is invalid, i. e. doesn’t match any of the recognized forms.

Parameters term (byres) — invalid term value.

2.3. pyxs.exceptions 7

http://docs.python.org/library/functions.html#int

pyxs Documentation, Release 0.1

exception pyxs.exceptions.InvalidPermission
Exception raised for permission which don’t match the following format:

w<domid> write only
r<domid> read only
b<domid> both read and write
n<domid> no access

Parameters perm (bytes) — invalid permission value.
exception pyxs.exceptions.ConnectionError
Exception raised for failures during socket operations.

exception pyxs.exceptions.UnexpectedPacket
Exception raised when recieved packet header doesn’t match the header of the packet sent, for example if
outgoing packet has op = Op.READ the incoming packet is expected to have op = Op.READ as well.

2.4 pyxs._internal

A place for secret stuff, not available in the public API.
copyright
3. 2011 by Selectel, see AUTHORS for more details.

pyxs._internal.Op = Operations(DEBUG=0, DIRECTORY=1, READ=2, GET_PERMS=3, WATCH=4, UNWATCH=5, TT
Operations supported by XenStore.

class pyxs._internal .Packet
A single message to or from XenStore.

Parameters
* op (int) — an item from Op, representing operation, performed by this packet.

* payload (bytes) — packet payload, should be a valid ASCII-string with characters between
[0x20;0x7f].

* rq_id (inf) — request id — hopefuly a unique identifier for this packet, XenStore simply
echoes this value back in reponse.

* tx_id (inf) — transaction id, defaults to 0 — which means no transaction is running.

8 Chapter 2. API reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

pyxs Documentation, Release 0.1

10 Chapter 3. Indices and tables

Python Module Index

P

Pyxs
PyxXs
PyXs
PyXs
Pyxs

, 1

._internal, 8
.client, 3
.exceptions, 7
.helpers, 6

11

pyxs Documentation, Release 0.1

12 Python Module Index

Index

C

Client (class in pyxs.client), 3
compile() (in module pyxs.helpers), 6
compose() (in module pyxs.helpers), 6
ConnectionError, 8

D

directory() (pyxs.client.Client method), 4

G

get_domain_path() (pyxs.client.Client method), 5
get_perms() (pyxs.client.Client method), 4

introduce() (pyxs.client.Client method), 5
InvalidOperation, 7

InvalidPath, 7

InvalidPayload, 7

InvalidPermission, 7

InvalidTerm, 7

is_domain_introduced() (pyxs.client.Client method), 5

M

many() (in module pyxs.helpers), 7
many_or_none() (in module pyxs.helpers), 7
mkdir() (pyxs.client.Client method), 4

O

Op (in module pyxs._internal), 8

P

Packet (class in pyxs._internal), 8
pyxs (module), 1

pyxs._internal (module), 8
pyxs.client (module), 3
pyxs.exceptions (module), 7
pyxs.helpers (module), 6

R

read() (pyxs.client.Client method), 4

release() (pyxs.client.Client method), 5
resume() (pyxs.client.Client method), 5
rm() (pyxs.client.Client method), 4

S

set_perms() (pyxs.client.Client method), 4
set_target() (pyxs.client.Client method), 5
spec() (in module pyxs.helpers), 6

T

transaction() (pyxs.client.Client method), 6
transaction_end() (pyxs.client.Client method), 6
transaction_start() (pyxs.client.Client method), 5

U

UnexpectedPacket, 8
UnixSocketConnection (class in pyxs.client), 3
unwatch() (pyxs.client.Client method), 5

W

wait() (pyxs.client.Client method), 5
watch() (pyxs.client.Client method), 4
write() (pyxs.client.Client method), 4

X

XenBusConnection (class in pyxs.client), 3

13

	pyxs
	API reference
	pyxs.client
	pyxs.helpers
	pyxs.exceptions
	pyxs._internal

	Indices and tables
	Python Module Index

